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ABSTRACT 
A new numerical model coupling the modified method of characteristics (MMOC) with the Galerkin finite 
element method (GFE) is proposed for the assessment of groundwater pollution in regional groundwater 
flow system. The MMOC-GFE solves governing solute transport equation which involves the simulation 
of advection and dispersion parts by MMOC and GFE, respectively. This model allows the use of large time 
steps (large Courant numbers) and large spatial steps (large Peclet numbers) with stable and convergent 
solutions. The proposed model is successfully implemented for a test case which includes comparison of 
the model results with reported solutions of other numerical models. It is found that MMOC-GFE model 
is quite adequate in simulating solute transport in heterogeneous aquifer with combined pumping and 
injection schemes. 
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INTRODUCTION 

Assessment of groundwater pollution using numerical models has the challenge of getting accurate and stable 
numerical solutions especially in highly heterogeneous media. The proposed MMOC-GFE model in this study 
attempts to meet this challenge by using Eulerian-Lagrangian formulation. The newly developed model controls 
numerical dispersion and provides stable solutions by solving advection part and hydrodynamic dispersion part by 
MMOC and GFE methods respectively. It is shown that for chosen test case (Chiang et al., 1989) even with high 
Courant and Peclet numbers the model solutions are in close agreement with reported solutions.  

An adaptive Eulerian-Lagrangian formulation (Neuman et al., 1984) solves the advective component of steep 
concentration front by single step reverse particle tracking of moving particles clustered around each front and the 
dispersive transport component is solved by Lagrangian formulation on a fixed grid. Chiang et al. (1989) discussed 
the model combining modified method of characteristics and mixed finite element method for solute transport 
simulation in groundwater flow system. The model allows arbitrary placement of injection and pumping wells 
within or on the boundaries of the domain together with different boundary conditions. It is found that the use of 
particle clusters at steep concentration fronts only caused numerical dispersion. Illangasekare et al. (1989) 
developed a discrete kernel approach for generating the velocity field solving the groundwater flow equation. 
Further the two-dimensional transient solute transport in water table aquifers is simulated by employing a method 
of characteristics. However, the simulation of sharp concentration fronts at injection well and divergent velocity 
fields at pumping well caused numerical smearing of the solutions. Garder et al. (1964) proposed a method of 
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characteristic technique is for the solution of the solute transport equation which uses imaginary moving particles 
to represent solute mass and to calculate the concentration change at a given point in the domain for each time 
step. Goode (1990) modified the conventional USGS MOC, 1988 model by using bilinear interpolation schemes 
for velocity interpolation. But the heterogeneities at the cell interfaces require the use of higher order interpolation 
schemes to accurately simulate advective transport by method of characteristics. Zhang et al. (1993) proposed a 
computationally efficient Eulerian-Lagrangian method for solving advection-dispersion equation in both steady 
and transient velocity field. The method uses single step reverse particle tracking technique for steep concentration 
fronts and separate weighting factors which relate to grid Peclet and Courant numbers are used for upstream and 
downstream region of the advection front. In transient velocity field the model determines the weighting factors 
automatically based on the mass balance errors. This model is found to be more suitable for the solution of the 
advection dominated problems. Frolkovic (2002) discussed a flux based method of characteristics for simulation 
of contaminant transport in flowing groundwater. This method combines advantages of numerical discretizations 
by finite volume methods and by methods of characteristics. This method is further extended for complex 
transport problems on multidimensional unstructured computational grids. It is reported that this method is 
difficult to implement for general computational grids and also it suffers from choice of time steps. (Lichtner, 
2002) applied the new form of the dispersion tensor involving axisymmetric media utilizing particle tracking 
techniques. It is demonstrated that for the case of spatially variable flow the drift term of dispersion must generally 
be included in the particle tracking algorithm to obtain accurate results. Banas (2004) solved non-linear convection-
diffusion equation using method of characteristics. The features of the scheme are demonstrated for one-
dimensional numerical experiment. Pinder and Gray (1977) discussed Galerkin finite element formulation to solve 
dispersion part of the solute transport equation. Kinzelbach and Frind (1986) used two-dimensional Galerkin finite 
element model with linear elements for solution of dispersion equation and effect of design of grid orientation on 
model accuracy is also investigated. Sheu and Chen (2002) solved the unsteady advection–diffusion equation using 
finite element model which employs a quadratic basis function to approximate the contaminant concentration. 
The development of a weighted residuals finite element model involves constructing a biased test function to retain 
the scheme stability for wide ranges of values of the physical coefficients. Igboekwe (2014) examined the 
movement of water solute from the surface of the earth to the aquifer and also to assess the impact of existing or 
proposed activity on the quality and quantity of groundwater through the use of groundwater flow and solute 
transport models. Finite element method is used for finding approximate solutions of partial differential equations 
as well as that of integral equations. The solution approach is based on either eliminating the differential equation 
completely or rendering the partial differential equation into an approximating system of ordinary differential 
equation. It is found that the order of the interpolation function has greater effect on solute transport solutions 
than groundwater flow solutions. 

The objectives of this study are i) to develop and verify a computationally efficient numerical model coupling 
modified method of characteristics and Galerkin finite element method for solving advection and dispersion parts 
of the solute transport equation, respectively, ii) to verify the accuracy and stability of model results by comparing 
with reported solutions and iii) to analyze the effects of porosity, dispersivity and pumping rate on solute 
concentration distribution. 

MATHEMATICAL FORMULATION 

Groundwater Flow Equation 

The governing equation of two-dimensional and transient groundwater flow in heterogeneous unconfined 
aquifer with pumping and injection wells is given as (Illangasekare et al., 1989).  

𝑆𝑆𝑦𝑦
∂ ℎ
∂ 𝑡𝑡

 =
∂2 (𝐾𝐾𝑥𝑥𝑥𝑥ℎ2)

∂ 𝑥𝑥2
 +

∂ 2(𝐾𝐾𝑦𝑦𝑦𝑦ℎ2)
∂ 𝑦𝑦2

± �𝑄𝑄𝑖𝑖  δ (𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑖𝑖,𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑖𝑖)) 
𝑛𝑛

𝑖𝑖 =1

 (1) 

where 𝑆𝑆𝑦𝑦  is the specific yield in percent, ℎ is hydraulic head [𝐿𝐿], 𝑡𝑡 is the time [𝑇𝑇], 𝑘𝑘𝑥𝑥𝑥𝑥and 𝑘𝑘𝑦𝑦𝑦𝑦  are hydraulic 
conductivities [𝐿𝐿 𝑇𝑇−1], 𝑄𝑄is pumping/injection rates (+ for pumping and - for injection) [𝐿𝐿3 𝑇𝑇−1],𝑛𝑛 total number 
of pumping/injection wells, 𝑥𝑥𝑜𝑜,𝑦𝑦𝑜𝑜are Cartesian coordinates of the origin [𝐿𝐿], 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖are the Cartesian coordinates of 
the location of pumping/injection well [𝐿𝐿]. 

Equation (1) is subject to the following initial condition which is given as 

ℎ(𝑥𝑥,𝑦𝑦, 0) = ℎ0 , (𝑥𝑥,𝑦𝑦) ∈ Ω (2) 

where ℎ0 is the initial head [𝐿𝐿] over the aquifer domain Ω [𝐿𝐿2]. 
Equation (1) is subject to the following Dirichlet and Neumann boundary conditions 
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ℎ(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = ℎ1 , (𝑥𝑥,𝑦𝑦) ∈ Γ1;  𝑡𝑡 ≥ 0
[{𝑞𝑞𝑏𝑏(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)} − [𝑘𝑘 ℎ]∇ℎ(𝑥𝑥,𝑦𝑦, 𝑡𝑡)]′{𝑛𝑛} = 0 , (𝑥𝑥, 𝑦𝑦) ∈ Γ2;  𝑡𝑡 ≥ 0 (3) 

where ℎ1 is the specified head over aquifer boundary Γ1, [𝐿𝐿],𝑞𝑞𝑏𝑏is the specified flux across boundary Γ2 [𝐿𝐿 𝑇𝑇−1], 
[[𝑘𝑘 ℎ] ∇ℎ(𝑥𝑥,𝑦𝑦, 𝑡𝑡)] is the groundwater flux due to head gradient [𝐿𝐿 𝑇𝑇−1] and 𝑛𝑛is the normal unit vector in outward 
direction. 

The x- and y- components of groundwater flow velocity are given as: 

𝑣𝑣𝑥𝑥  =  −  
∂
∂ 𝑥𝑥

(
𝑘𝑘𝑥𝑥𝑥𝑥 ×  ℎ

θ
) 

𝑣𝑣𝑦𝑦  =  −  
∂
∂ 𝑥𝑥

(
𝑘𝑘𝑦𝑦𝑦𝑦 ×  ℎ

θ
) 

(4) 

where θ is the effective porosity of the aquifer and 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦 are velocity components [𝐿𝐿 𝑇𝑇−1].  

Solute Transport Equation 

The governing equation of solute transport in two-dimensional transient groundwater flow system with 
pumping/injection wells can be given as (Illangasekare et al., 1989), 

𝑅𝑅
∂ 𝑐𝑐
∂ 𝑡𝑡

 =
∂2 (𝐷𝐷𝑥𝑥𝑥𝑥 𝑐𝑐)

∂ 𝑥𝑥2
 +

∂2 (𝐷𝐷𝑦𝑦𝑦𝑦 𝑐𝑐)
∂ 𝑦𝑦2

− 𝑉𝑉𝑥𝑥
∂ 𝑐𝑐
∂ 𝑥𝑥

− 𝑉𝑉𝑦𝑦
∂ 𝑐𝑐
∂ 𝑦𝑦

±  �𝑄𝑄𝑖𝑖
(𝑐𝑐 − 𝑐𝑐𝑖𝑖)
θ ℎ

 δ (𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑖𝑖,𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖 =1

 (5) 

where𝑅𝑅  is the retardation factor [dimensionless], 𝑐𝑐 is the ambient solute concentration [𝑝𝑝𝑝𝑝𝑝𝑝 ], 𝐷𝐷𝑥𝑥𝑥𝑥 , 𝐷𝐷𝑦𝑦𝑦𝑦  are 
hydrodynamic dispersion coefficients [L2T-1], 𝑐𝑐𝑖𝑖′is solute concentration of the pumped/injected water at 𝑖𝑖th well 
point [𝑝𝑝𝑝𝑝𝑝𝑝], 𝑛𝑛 is the number of pumping/ injection well points in the domain. 

An initial concentration of the solute is prescribed in the entire aquifer domain Ω by 

𝑐𝑐(𝑥𝑥,𝑦𝑦, 0) = 𝑐𝑐0(𝑥𝑥,𝑦𝑦) , (𝑥𝑥,𝑦𝑦) ∈ Ω (6) 

where 𝑐𝑐0 is the initial solute concentration [ppm].  
Equation (1) is subject to the following Dirichlet boundary condition and Neumann boundary conditions which 

are given as 

𝑐𝑐(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑐𝑐1 , (𝑥𝑥,𝑦𝑦) ∈ Γ1;  𝑡𝑡 ≥ 0
[{𝑣𝑣𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑡𝑡)} − [𝐷𝐷]∇𝑐𝑐( 𝑥𝑥,𝑦𝑦, 𝑡𝑡)]′. {𝑛𝑛} = 𝑣𝑣𝑐𝑐′ , (𝑥𝑥,𝑦𝑦) ∈ Γ2 ;  𝑡𝑡 ≥ 0 (7) 

where 𝑐𝑐1 is the prescribed solute concentration over aquifer domain boundaryΓ1, [ppm], where 𝑣𝑣𝑐𝑐′is the specified 
advective solute flux across the boundary Γ2 [M/L3/T] and [𝐷𝐷] ∇ 𝑐𝑐 is the dispersive solute flux across the 
boundary Γ2 [M/L3/T]. 

The hydrodynamic dispersion coefficients in the tensor form can be given as (Zhang et al., 1993). 

�
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥
𝐷𝐷𝑦𝑦𝑦𝑦 𝐷𝐷𝑦𝑦𝑦𝑦

�  =  
α𝐿𝐿
|𝑣𝑣| �

𝑣𝑣𝑥𝑥2 𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦 𝑣𝑣𝑦𝑦2

�  +
α𝑇𝑇
|𝑣𝑣| �

𝑣𝑣𝑦𝑦2 −𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦
−𝑣𝑣𝑥𝑥𝑣𝑣𝑦𝑦 𝑣𝑣𝑥𝑥2

� (8) 

where α𝐿𝐿 and α𝑇𝑇 are longitudinal and transverse dispersivities, respectively [𝐿𝐿] and |𝑣𝑣| is the magnitude of the 
groundwater flow velocity [𝐿𝐿𝑇𝑇−1]. 

NUMERICAL METHODS 

The flow chart in Figure 1 describes the various steps involved in MMOC-GFE Model. 

Modified Method of Characteristics  

The modified method of characteristics (MMOC) is proposed as a variant of the conventional USGS-MOC 
model (Konikow et al., 1978). Unlike the conventional USGS-MOC model, the MMOC method solves the 
advection part of solute transport equation using real fluid particles. Following steps are involved in MMOC model:  
Step 1. At the start of the simulation, a set of fluid particles are generated in the block centered finite difference 
grid. Each fluid particle has assigned the solute concentration equal to the concentration of the respective grid to 
which it belongs.  
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Step 2. The Equation 5 is rearranged in the following form using material derivative term as,  

𝐷𝐷𝐷𝐷
𝐷𝐷𝐷𝐷

≅ �𝑅𝑅
∂𝑐𝑐
∂𝑡𝑡

+ 𝑣𝑣𝑥𝑥
∂𝑐𝑐
∂𝑥𝑥

+ 𝑣𝑣𝑦𝑦
∂𝑐𝑐
∂𝑦𝑦
� = 𝐷𝐷𝑥𝑥𝑥𝑥

∂2𝑐𝑐
∂𝑥𝑥2

+ 𝐷𝐷𝑦𝑦𝑦𝑦
∂2𝑐𝑐
∂𝑦𝑦2

± �
(c − 𝑐𝑐𝑖𝑖′)
θℎ

𝑄𝑄𝑖𝑖

𝑛𝑛

𝑖𝑖=1

δ(𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑖𝑖) (9) 

Step 3. The left hand side term of the above equation is solved using modified method of characteristics which 
involves the tracking of particles backward in time along characteristic lines. Thus the particle location at the base 
of the characteristic curve represents the location of the drifting particle at the previous time level, the slope of 
characteristic curves representing velocity components are used to compute the advective transport as follows:  

𝑑𝑑 𝑥𝑥
𝑑𝑑 𝑡𝑡

=  𝑣𝑣𝑥𝑥, 𝑑𝑑 𝑦𝑦
𝑑𝑑 𝑡𝑡

=  𝑣𝑣𝑦𝑦 (10) 

δ𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 = 𝑣𝑣𝑥𝑥𝑖𝑖,𝑗𝑗 × Δ𝑡𝑡, δ𝑦𝑦𝑖𝑖,𝑗𝑗𝑡𝑡 = 𝑣𝑣𝑦𝑦𝑖𝑖,𝑗𝑗 × Δ𝑡𝑡 (11) 

where δ𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡  and δ𝑦𝑦𝑖𝑖,𝑗𝑗𝑡𝑡  are the advective displacements in x-and y-directions, respectively [L].  
Step 4. After each time step, the concentration in the grid is updated by computing the concentration change due 
to advection alone as follows: 

𝑑𝑑 𝑐𝑐
𝑑𝑑 𝑡𝑡

=  
∂ 𝑐𝑐
∂ 𝑡𝑡

+
𝑑𝑑 𝑥𝑥
𝑑𝑑 𝑡𝑡

∂ 𝑐𝑐
∂𝑥𝑥

+
𝑑𝑑 𝑦𝑦
𝑑𝑑 𝑡𝑡

∂ 𝑐𝑐
∂𝑦𝑦

 (12) 

Step 5: Using bilinear interpolation scheme (Goode, 1990), from the quadrantal location of particles, the 
concentration at the grid point is updated as follows: 

𝑐𝑐𝑎𝑎𝑖𝑖,𝑗𝑗
 𝑡𝑡 +Δ𝑡𝑡 = 𝑐𝑐𝑅𝑅𝑎𝑎

𝑡𝑡 = (1 − 𝑓𝑓𝑦𝑦) �(1− 𝑓𝑓𝑓𝑓) (𝑐𝑐𝑖𝑖,𝑗𝑗𝑡𝑡 ) + (𝑓𝑓𝑥𝑥) (𝑐𝑐𝑖𝑖−1,𝑗𝑗
𝑡𝑡 )�  +  (𝑓𝑓𝑦𝑦)�(1− 𝑓𝑓𝑓𝑓) (𝑐𝑐𝑖𝑖,𝑗𝑗−1𝑡𝑡 ) + (𝑓𝑓𝑥𝑥) (𝑐𝑐𝑖𝑖−1,𝑗𝑗−1

𝑡𝑡 )� (13) 

where 𝑐𝑐𝑎𝑎𝑖𝑖,𝑗𝑗
𝑡𝑡+Δ𝑡𝑡is the concentration at the grid point after advective transport, [𝑝𝑝𝑝𝑝𝑝𝑝]; 𝑅𝑅is the location of the base 

of the characteristic curve; 𝑓𝑓𝑥𝑥 =  (Δ𝑥𝑥 − δ𝑥𝑥𝑖𝑖,𝑗𝑗𝑡𝑡 ) Δ 𝑥𝑥⁄ and 𝑓𝑓𝑦𝑦 =  (Δ𝑦𝑦 − δ𝑦𝑦𝑖𝑖,𝑗𝑗𝑡𝑡 ) Δ 𝑦𝑦⁄ are factors of bilinear 
interpolation; (𝑖𝑖 − 1, 𝑗𝑗 ;   𝑖𝑖 − 1, 𝑗𝑗 − 1;   𝑖𝑖, 𝑗𝑗 − 1 ;   𝑖𝑖, 𝑗𝑗) are the indices of the closest grid point for given location of 
the particle.  

Galerkin Finite Element Method  

The Galerkin finite element method (GFE) is used to compute the change in nodal concentration due to 
hydrodynamic dispersion as follows: 
Step 1: The second-order hydrodynamic dispersion term in Equation (5) is approximated using GFE method. It 
uses Green function to yield the following system of algebraic linear equations (Pinder and Gray, 1977), 

�[A] +
1
Δ 𝑡𝑡

 [B]�  �𝑐𝑐𝐿𝐿𝑡𝑡+Δ𝑡𝑡�  =  �
1
Δ 𝑡𝑡

 [B]�  {𝑐𝑐𝐿𝐿𝑡𝑡} + {𝑑𝑑𝐿𝐿} + {gL} (14) 

where [A] is the global conductance matrix which is formed by assembling the elemental conductance matrices 
[𝐴𝐴𝐿𝐿𝑒𝑒] which is given as, 

 
Figure 1. Flow Chart of MMOC-GFE Model 

Compute velocity field by solving Eq.1 using GFE. 

Compute solute concentration breakthrough curve by solving Eq. 5 using MMOC-GFE 

Simulate advection part by solving Eqs. 9-13 using MMOC  

Simulate hydrodynamic dispersion part by solving Eqs. 14-18 using GFE. 

Check accuracy and stability of numerical solutions using Eqs. 19 & 20. 
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𝐴𝐴𝐿𝐿𝑒𝑒 = �
𝑒𝑒

�𝐷𝐷𝑥𝑥𝑥𝑥
∂𝑐𝑐𝐿𝐿𝑒𝑒
∧

∂𝑥𝑥
∂𝑁𝑁𝐿𝐿𝑒𝑒

∂𝑥𝑥
+ 𝐷𝐷𝑦𝑦𝑦𝑦

∂𝑐𝑐𝐿𝐿𝑒𝑒
∧

∂𝑦𝑦
∂𝑁𝑁𝐿𝐿𝑒𝑒

∂𝑦𝑦
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

=
𝐷𝐷𝑥𝑥𝑥𝑥
4 𝐴𝐴𝑒𝑒 �

𝑏𝑏𝑖𝑖𝑒𝑒 𝑏𝑏𝑖𝑖𝑒𝑒 𝑏𝑏𝑖𝑖𝑒𝑒 𝑏𝑏𝑗𝑗𝑒𝑒 𝑏𝑏𝑖𝑖𝑒𝑒 𝑏𝑏𝑘𝑘𝑒𝑒

𝑏𝑏𝑗𝑗𝑒𝑒 𝑏𝑏𝑖𝑖𝑒𝑒 𝑏𝑏𝑗𝑗𝑒𝑒 𝑏𝑏𝑗𝑗𝑒𝑒 𝑏𝑏𝑗𝑗𝑒𝑒 𝑏𝑏𝑘𝑘𝑒𝑒

𝑏𝑏𝑘𝑘 
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[B] is the global storage matrix which is assembled from elemental storage matrices [𝐵𝐵𝐿𝐿𝑒𝑒] which is given as, 

𝐵𝐵𝐿𝐿𝑒𝑒 = �𝑅𝑅𝑒𝑒
∂𝑐𝑐𝐿𝐿𝑒𝑒
∧

∂𝑡𝑡
𝑁𝑁𝐿𝐿𝑒𝑒

𝑒𝑒

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = �𝑅𝑅𝑒𝑒𝑁𝑁𝐿𝐿𝑒𝑒𝑁𝑁𝐿𝐿𝑒𝑒

𝑒𝑒

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 𝑅𝑅𝑒𝑒
𝐴𝐴𝑒𝑒

12 �
2 1 1
1 2 1
1 1 2

� , 𝐿𝐿 = 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘 (16) 

{dL} is the global load vector which is assembled from elemental load vectors {𝑑𝑑𝐿𝐿𝑒𝑒} which is given as, 

𝑑𝑑𝐿𝐿𝑒𝑒 = �

⎝

⎜
⎛
�
𝑛𝑛𝑤𝑤
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 )𝑄𝑄𝑖𝑖𝑒𝑒 δ (𝑥𝑥𝑜𝑜 − 𝑥𝑥𝑖𝑖𝑒𝑒,𝑦𝑦𝑜𝑜 − 𝑦𝑦𝑖𝑖𝑒𝑒) + �(𝑐𝑐𝐿𝐿𝑒𝑒 − 𝑐𝑐𝑖𝑖′
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)𝑞𝑞𝑗𝑗𝑒𝑒 +
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{g} is the global boundary flux vector which is assembled from the elemental boundary flux vectors {𝑔𝑔𝐿𝐿𝑒𝑒} which is 
given as, 

𝑔𝑔𝐿𝐿𝑒𝑒 = �  �𝐷𝐷𝑥𝑥𝑥𝑥𝑒𝑒
∂ 𝑐𝑐𝐿𝐿𝑒𝑒

∧

∂𝑥𝑥
 𝑛𝑛𝑥𝑥 + 𝐷𝐷𝑦𝑦𝑦𝑦𝑒𝑒

∂ 𝑐𝑐𝐿𝐿𝑒𝑒
∧

∂𝑦𝑦
 𝑛𝑛𝑦𝑦�

Γ𝑒𝑒
 𝑁𝑁𝐿𝐿𝑒𝑒 𝑑𝑑σ =  �𝑐𝑐𝐿𝐿𝑒𝑒   

𝑞𝑞𝑏𝑏𝑏𝑏𝐿𝐿
𝑒𝑒
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 �
𝑑𝑑 σ 𝑦𝑦𝑒𝑒

2 �  + 𝑐𝑐𝐿𝐿𝑒𝑒   
𝑞𝑞𝑏𝑏𝑏𝑏𝐿𝐿

𝑒𝑒

𝐷𝐷𝑦𝑦𝑦𝑦𝑒𝑒
 �
𝑑𝑑 σ 𝑥𝑥𝑒𝑒

2 ��   �
1
1
1
� (18) 

Step 2: From the concentration distribution obtained using Equation (13) the change in concentration due to 
hydrodynamic dispersion distribution i.e. 𝑐𝑐𝑑𝑑𝑖𝑖,𝑗𝑗

𝑡𝑡+Δ𝑡𝑡
 is obtained by Equation (14). 

Step 3: After every time step, the final concentration at a node is computed by adding the change in concentration 
due to advection and dispersion.  

Numerical Stability and Accuracy 

The stability of the transport model solutions is checked by the criteria of Courant and Peclet numbers which 
are given as (Daus et al., 1986), 

𝐶𝐶𝑥𝑥  =  
𝑣𝑣𝑥𝑥  ×  Δ 𝑡𝑡
𝑇𝑇𝑥𝑥𝑥𝑥

 ≤  1 ,𝐶𝐶𝑦𝑦  =  
𝑣𝑣𝑦𝑦  ×  Δ 𝑡𝑡
𝑇𝑇𝑦𝑦𝑦𝑦

 ≤  1;  𝑃𝑃𝑥𝑥  =  
𝑣𝑣𝑥𝑥  ×  Δ 𝑥𝑥
𝐷𝐷𝑥𝑥𝑥𝑥

 ≤  2 ,𝑃𝑃𝑦𝑦  =  
𝑣𝑣𝑦𝑦  ×  Δ 𝑦𝑦
𝐷𝐷𝑦𝑦𝑦𝑦

 ≤  2  (19) 

where 𝐶𝐶𝑥𝑥, 𝐶𝐶𝑦𝑦and 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦are Courant and Peclet numbers, respectively.  
The accuracy of the transport model solutions is verified by the criteria of mass balance error which is given as, 

𝐸𝐸𝑐𝑐  =  
100 (Δ 𝑀𝑀𝑓𝑓𝑐𝑐𝑇𝑇 − Δ 𝑀𝑀𝑠𝑠𝑐𝑐𝑇𝑇)

𝑀𝑀𝑐𝑐
0  (20) 

where 𝐸𝐸𝑐𝑐 is the average mass balance error [percent], Δ 𝑀𝑀𝑓𝑓𝑐𝑐𝑇𝑇is the net solute flux [ppm], Δ 𝑀𝑀𝑠𝑠𝑐𝑐𝑇𝑇is the change in 
solute mass stored [ppm] and 𝑀𝑀𝑐𝑐

0is the initial solute mass [ppm]. 

Test Case 

For the test case an example problem (Chiang et al., 1989) is chosen as shown in Figure 2. The purpose of this 
test case to study the effect of porosity, dispersivity and pumping rate on solute concentration distribution. Test 
case involves a two-dimensional square aquifer of size 9.14 m as shown in Figure 1. Aquifer domain is discretized 
into square 30 × 30 grids and 1800 triangular elements each of size 0.31 m. A pumping well situated at location 
(1.8 m, 1.8 m) extracts the contaminated water at the constant discharge rate of 0.279 m3/d. This well also acts an 
observation well. The point source of contamination is the injection well situated at location (7.2 m, 7.2 m) 
constantly injects the contaminant in the aquifer with constant injection rate of 0.279 m3/d. The solute mass 
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introduced to aquifer at injection well is removed by pumping well thereby remediating the aquifer. The flow 
parameters used are: hydraulic conductivity;𝑘𝑘=0.41 m/d, specific yield;𝑆𝑆𝑦𝑦=0.1,effective porosity;θ=0.1.The 
transport parameters are: longitudinal dispersivity;α𝐿𝐿=0.914 m and transverse dispersivity; α𝑇𝑇=0.00914 m. The 
time parameters are: time step size; Δ𝑡𝑡=0.1 day, total simulation time; 𝑇𝑇= 20 days.  

RESULTS AND DISCUSSION 

Velocity Field 

Figure 3 shows the velocity field of the test case described above by solving Equation (1) using Galerkin finite 
element method. The velocity field is obtained for chosen hydraulic conductivity filed. From Figure 3 the stream 
lines show that the convergent and divergent flow field is developed at the location of injection and pumping wells 
respectively. It is found that at the source and sink point for same pumping and injectin rates the resultant velocity 
is observed to be 1.7 m/d.  

Verification of MMOC=GFE Model  

Figure 4 shows the comparison of solute concentration breakthrough curves obtained by the MMOC-GFE 
model with the reported solution (Chiang et al., 1989). It is found that both the breakthrough curves match very 
closely during the simulation period from 12 to 17 days. However they deviate in initial and final stages of 
simulation up to 10% due to numerical dispersion. The 56% injected solute reaches at observation point after 20 
days. 

 
Figure 2. Schematic of the Test Case used for the simulation of solute transport in two-dimensional transient 
groundwater flow under the combined pumping and injection well condition 
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Effect of Porosity  

Figure 5 shows the effect of porosity on solute concentration distribution. Three different values of porosity 
as base value i.e. 0.10 and 15% less and 15% high are considered. It is observed from the Figure 5 that the 
breakthrough curve simulated with the porosity of 0.15 deviates at the end of 20 days period by an order of 65% 
.It is also shown that for higher values of porosity which is resulting into higher volumes of groundwater flow in 
the given aquifer volume thus lowering the solute mass concentration. Thus the physical effect of porosity variation 
is properly simulated by proposed model comparison of three concentration breakthrough curves simulated by 
FEFLOW-MMOCSOLUTE model with three different values of the effective porosity. 

 
Figure 3. Velocity field 

 
Figure 4. Comparison of the MMOC-GFE model solutions with reported solutions 
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Effect of Transverse Dispersivity  

Figure 6 shows the comparison of the concentration breakthrough curves simulated with the three values of 
the transverse dispersivity. The magnitude of transverse dipersivity is varied as one order less and one order higher 
respectively compared to its base value (0.00914) i.e. 0.0914 and 0.000914 m, respectively. It is found that the 
concentration breakthrough simulated with the dispersivity of 0.0914 deviates from the breakthrough curve 
simulated with the initially chosen dispersivity value by 7%. The concentration breakthrough simulated with the 
dispersivity of 0.000914 m deviates from the breakthrough curve simulated with the initially chosen value of the 
dispersivity by 22%. 

Effect of Pumping Rate  

Figure 7 shows the comparison of the three concentration breakthrough curves at the pumping well which is 
considered as observation well. The initial pumping rate of 0.279 m3/d varied to its half (0.1395 m3/d) and double 
value of 0.418 m3/d. Due to high pumping rate the concentration goes down and due to low pumping rate the less 
concentration mass is taken out from the contaminated aquifer resulting into the occurrence of higher 
concentrations at the observation well. This physical condition is adequately simulated by numerical models. The 
concentration breakthrough simulated with increased pumping rate drops down to 46% of that of the 

 
Figure 5. Effect of porosity on solute concentration distribution 

 
Figure 6. Effect of transverse dispersivity on solute concentration distribution 
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concentration for the given pumping rate and for decreased pumping rate the breakthrough concentration rises to 
35% of that of the concentration for the given pumping rate. 

CONCLUSIONS 

1. Verification of the MMOC-GFE model for chosen test case show that the model results are in close 
agreement with reported solutions. 

2. Investigations pertaining to effect of space and time discretizations on proposed model reveal that the 
model produce stable and accurate results for high values of Courant and Peclet numbers. 

3. It is found that the solute concentration arrival time at observation point increases by 22% for one order 
less value of transverse dispersivity from its base value because of slow dispersive movement of solute.  

4. It is noticed from model solutions that the higher values of effective porosity results into increased volume 
of groundwater flow thereby lowering solute mass concentration. 

5. Model results show accurate simulation of physical condition that the higher pumping rate lowers the 
solute concentration at the observation well. 
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