Aquademia

Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model
Ahmad Khan Burhan 1 * , Muhammad Usman 1, Syed Ahsan Ali Bukhari 1, Muhammad Tahir Khan 1, Khalid Malik 1
More Detail
1 Research and Development Division, Pakistan Meteorological Department, Pitras Bukhari Rd., H-8/2, Islamabad, PAKISTAN
* Corresponding Author
Research Article

Aquademia, 2020 - Volume 4 Issue 1, Article No: ep20015
https://doi.org/10.29333/aquademia/8226

Published Online: 30 Apr 2020

Views: 53 | Downloads: 54

How to cite this article
APA 6th edition
In-text citation: (Burhan et al., 2020)
Reference: Burhan, A. K., Usman, M., Ahsan Ali Bukhari, S., Tahir Khan, M., & Malik, K. (2020). Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model. Aquademia, 4(1), ep20015. https://doi.org/10.29333/aquademia/8226
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Burhan AK, Usman M, Ahsan Ali Bukhari S, Tahir Khan M, Malik K. Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model. AQUADEMIA. 2020;4(1):ep20015. https://doi.org/10.29333/aquademia/8226
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Burhan AK, Usman M, Ahsan Ali Bukhari S, Tahir Khan M, Malik K. Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model. AQUADEMIA. 2020;4(1), ep20015. https://doi.org/10.29333/aquademia/8226
Chicago
In-text citation: (Burhan et al., 2020)
Reference: Burhan, Ahmad Khan, Muhammad Usman, Syed Ahsan Ali Bukhari, Muhammad Tahir Khan, and Khalid Malik. "Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model". Aquademia 2020 4 no. 1 (2020): ep20015. https://doi.org/10.29333/aquademia/8226
Harvard
In-text citation: (Burhan et al., 2020)
Reference: Burhan, A. K., Usman, M., Ahsan Ali Bukhari, S., Tahir Khan, M., and Malik, K. (2020). Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model. Aquademia, 4(1), ep20015. https://doi.org/10.29333/aquademia/8226
MLA
In-text citation: (Burhan et al., 2020)
Reference: Burhan, Ahmad Khan et al. "Prognosis of Hydro-Meteorological Attributes based on Simulation and Projection of Streamflow in a High-Altitude Basin using Hydrologiska Byråns Vattenbalansavdelning (HBV) Model". Aquademia, vol. 4, no. 1, 2020, ep20015. https://doi.org/10.29333/aquademia/8226
ABSTRACT
Subsistence of freshwater resources at high altitude regions has remained a paradox for stakeholder communities at both regional and global levels. To address such an issue, Hydrologiska Byråns Vattenbalansavdelning Light (hereafter HBV) model was used to assess hydro-meteorological shifts triggered under climate change scenarios in snow dominant region of Chitral river basin. The model performed well both during calibration and validation periods with Nash Sutcliffe Efficiency values of 0.91 and 0.81 respectively on daily time scale in the basin. The HBV was thereafter engaged for the projection of streamflow in the Chitral river basin using projected data of four statistically downscaled climate models with four emission scenarios for the 21st century. Multi-model ensemble projections of precipitation revealed an increase of up to 165% in monsoon inception period and an increase in temperature of up to 9.5°C in winter to summer transitioning period for the 2070‒2099 time slice under a high-end emission scenario. An increase of up to 122% in evapotranspiration was projected in the peak winter months for the 2070‒2099 time slice under the high-end emission scenario. Attributed to the significant increases in the temperature and the liquid precipitation, it was projected that basin streamflow had potential to increase by up to 182 % in the monsoon inception period for the 2070‒2099 time slice under the high-end emission scenario. It further indicated that precipitation might be falling as liquid rain most of the year, and snow will hardly accumulate in prognosticated future environements of the basin.
KEYWORDS
REFERENCES
  • Aghakouchak, A., & Habib, E. (2010). Application of a conceptual hydrologic model in teaching hydrologic processes. Int. J. Eng. Educ., 26(4), 963-973. Retrieved from http://amir.eng.uci.edu/publications/10_EduHBV_IJEE.pdf
  • Ahmad, S., Israr, M., Liu, S., Hayat, H., Gul, J., Wajid, S., & Tahir, A. A. (2018). Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan). Geocarto. Int., 1-24. https://doi.org/10.1080/10106049.2018.1524517
  • Akhtar, M., Ahmad, N., & Booij, M. J. (2008). The impact of climate change on the water resources of Hindukush–Karakorum–Himalaya region under different glacier coverage scenarios. J. Hydrol., 355(1-4), 148-163. https://doi.org/10.1016/j.jhydrol.2008.03.015
  • Ali, S., Li, D., Congbin, F., & Khan, F. (2015). Twenty first century climatic and hydrological changes over Upper Indus Basin of Himalayan region of Pakistan. Environ. Res. Lett., 10(1), 014007. https://doi.org/10.1088/1748-9326/10/1/014007
  • Archer, D. R., & Fowler, H. J. (2008). Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J. Hydrol., 361(1-2), 10-23. https://doi.org/10.1016/j.jhydrol.2008.07.017
  • Arnell, N. W., (2004). Climate‐change impacts on river flows in Britain: the UKCIPO2 scenarios. Water Environ. J., 18(2), 112-117. https://doi.org/10.1111/j.1747-6593.2004.tb00507.x
  • Athar, H. (2012). Decadal variability of the observed daily temperature in Saudi Arabia during 1979–2008. Atmos. Sci. Lett., 13(4), 244-249. https://doi.org/10.1002/asl.390
  • Athar, H. (2013). Seasonal variability of the observed and the projected daily temperatures in northern Saudi Arabia. Clim. Change., 119(2), 333-344. https://doi.org/10.1007/s10584-013-0717-4
  • Beniston, M. (2003). Climatic change in mountain regions: a review of possible impacts. Climate variability and change in high elevation regions: Past, present & future, 5-31. https://doi.org/10.1007/978-94-015-1252-7_2
  • Beniston, M., Diaz, H. F., & Bradley, R. S. (1997). Climatic change at high elevation sites: an overview. Clim. Change., 36(3-4), 233-251. https://doi.org/10.1023/A:1005380714349
  • Bergstrom, S. (1992). The HBV model-its structure and applications. Retrieved from https://www.smhi.se/en/publications/the-hbv-model-its-structure-and-applications-1.83591
  • Bokhari, S. A. A., Ahmad, B., Ali, J., Ahmad, S., Mushtaq, H., & Rasul, G. (2018). Future climate change projections of the Kabul River Basin using a multi-model ensemble of high-resolution statistically downscaled data. Earth Syst. Environ., 2(3), 477-497. https://doi.org/10.1007/s41748-018-0061-y
  • Buda, S., Huang, J., Gemmer, M., Jian, D., Tao, H., Jiang, T., & Zhao, C. (2016). Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmos. Res, 178, 138-149. https://doi.org/10.1016/j.atmosres.2016.03.023
  • Burhan, A., Waheed, I., Syed, A. A. B., Rasul, G., Shreshtha, A. B., & Shea, J. M. (2015). Generation of high-resolution gridded climate fields for the upper Indus River Basin by downscaling CMIP5 outputs. J. Earth. Sci. & Cli. Change., 6(2), 1. https://doi.org/10.4172/2157-7617.1000254
  • Chen, J., Brissette, F. P., & Leconte, R. (2011). Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J. Hydrol., 401(3-4), 190-202. https://doi.org/10.1016/j.jhydrol.2011.02.020
  • Chiew, F., Prosser, I., & Post, D. (2011). On climate variability and climate change and impact on water resources. 3553-3559. Retrieved from https://publications.csiro.au/rpr/pub?list=BRO&pid=csiro:EP116012&sb=RECENT&n=10&rpp=10&page=17&tr=5035&dr=all&dc4.browseYear=2011
  • Chu, P. S., Chen, Y. R., & Schroeder, T. A. (2010). Changes in precipitation extremes in the Hawaiian Islands in a warming climate. J. Clim, 23(18), 4881-4900. https://doi.org/10.1175/2010JCLI3484.1
  • Dahri, Z. H., Ahmad, B., Leach, J. H., & Ahmad, S., (2011). Satellite-based snowcover distribution and associated snowmelt runoff modeling in Swat River Basin of Pakistan. Proc. Pak. Acad. Sci, 48, 19-32. Retrieved from http://paspk.org/wp-content/uploads/proceedings/48%20No.%201/3de98a74proc48-1.pdf
  • Donat, M. G., & Alexander, L. V. (2012). The shifting probability distribution of global daytime and night‐time temperatures. Geophys. Res. Lett., 39(14). https://doi.org/10.1029/2012GL052459
  • Fang, X., & Pomeroy, J. W. (2007). Snowmelt runoff sensitivity analysis to drought on the Canadian prairies. Hydrol. Processes. An International Journal, 21(19), 2594-2609. https://doi.org/10.1002/hyp.6796
  • Gautam, M. R., Timilsina, G. R., & Acharya, K. (2013). Climate change in the Himalayas: current state of knowledge. The World Bank. https://doi.org/10.1007/s10584-013-0737-0
  • Hatta, S., Nishimura, T., Saga, H., & Fujita, M. (1995). Study on snowmelt runoff prediction using weekly weather forecast. Environ. Int., 21(5), 501-507. https://doi.org/10.1016/0160-4120(95)00049-Q
  • Hewitt, K., & Young, G. J. (1990). Snow and ice hydrology project: Upper Indus basin. Overall report, Canadian Centre. Retrieved from http://hydrologie.org/redbooks/a218/iahs_218_0049.pdf
  • Houben, G., Niard, N., Tünnermeier, T., & Himmelsbach, T. (2009). Hydrogeology of the Kabul Basin (Afghanistan), part I: aquifers and hydrology. Hydrogeol. J., 17(3), 665-677. https://doi.org/10.1007/s10040-008-0377-z
  • Iqbal, M. S., Dahri, Z. H., Querner, E. P., Khan, A., & Hofstra, N. (2018). Impact of climate change on flood frequency and intensity in the Kabul river basin. Geosci., 8(4), 114. https://doi.org/10.3390/geosciences8040114
  • Irmak, S., Irmak, A., Allen, R. G., & Jones, J. W. (2003). Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. J. Irrig. Drain. Eng., 129(5), 336-347. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:5(336)
  • Kay, A. L., Davies, H. N., Bell, V. A., & Jones, R. G. (2009). Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim. change, 92(1-2), 41-63. https://doi.org/10.1007/s10584-008-9471-4
  • Khalid, S., Rehman, S. U., Shah, S. M. A., Naz, A., Saeed, B., Alam, S., & Gul, H. (2013). Hydro-meteorological characteristics of Chitral River basin at the peak of the Hindukush range. Nat Sci, 5(9), 987-992. https://doi.org/10.4236/ns.2013.59120
  • Khan, K.; Yaseen, M.; Latif, Y.; Nabi, G., (2015). Detection of river flow trends and variability analysis of Upper Indus Basin. Pakistan. Sci. Int., 27(2), 1261-1270. Retrieved from http://www.sci-int.com/pdf/636343288172874943.pdf
  • Konz, M., & Seibert, J. (2010). On the value of glacier mass balances for hydrological model calibration. J. Hydrol, 385(1-4), 238-246. https://doi.org/10.1016/j.jhydrol.2010.02.025
  • Langsholt, E., Lawrence, D., Wong, W. K., Andjelic, M., Ivkovic, M., & Vujadinovic, M. (2013). Effects of climate change in the Kolubara and Toplica catchments, Serbia. Norwegian Water Resources and Energy Directorate, Oslo, Norway. Retrieved from http://publikasjoner.nve.no/rapport/2013/rapport2013_62.pdf
  • Larson, J. W. (2012). Visualizing Climate Variability with Time-Dependent Probability Density Functions, Detecting It Using Information Theory. Procedia. Comput. Sci., 9, 917-926. https://doi.org/10.1016/j.procs.2012.04.098
  • Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B., & Bierkens, M. F. (2016). Climate change impacts on the upper Indus hydrology: Sources, shifts and extremes. PloS one, 11(11). https://doi.org/10.1371/journal.pone.0165630
  • Minville, M., Brissette, F., & Leconte, R. (2008). Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J. Hydrol, 358(1-2), 70-83. https://doi.org/10.1016/j.jhydrol.2008.05.033
  • Naeem, U. A., Hashmi, H. N., & Shakir, A. S. (2013). Flow trends in river Chitral due to different scenarios of glaciated extent. KSCE J. Civ. Eng., 17(1), 244-251. https://doi.org/10.1007/s12205-013-1978-1
  • Nestler, A., Huss, M., Ambartzumian, R., & Hambarian, A. (2014). Hydrological implications of covering wind-blown snow accumulations with geotextiles on Mount Aragats, Armenia. Geosci., 4(3), 73-92. https://doi.org/10.3390/geosciences4030073
  • Sagar, S., Roberts, D., Bala, B., & Lymburner, L. (2017). Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ., 195, 153-169. https://doi.org/10.1016/j.rse.2017.04.009
  • Seibert, J. (2000). Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrol. Earth Syst. Sci., 4, 215–224. https://doi.org/10.5194/hess-4-215-2000
  • Shakir, A. S., & Ehsan, S. (2016). Climate change impact on river flows in Chitral watershed. Pak. J. Engn. Appl. Sci., 42(26), 12-22. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:42055342
  • Shen, Y., Oki, T., Utsumi, N., Kanae, S., & Hanasaki, N. (2008). Projection of future world water resources under SRES scenarios: water withdrawal/Projection des ressources en eau mondiales futures selon les scénarios du RSSE: prélèvement d’eau. Hydrol. Sci. J, 53(1), 11-33. https://doi.org/10.1623/hysj.53.1.11
  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535. Cambridge, UK and New York, NY, USA: Cambridge University Press.
  • Tahir, A. A., Chevallier, P., Arnaud, Y., Neppel, L., & Ahmad, B. (2011). Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol, 409(1-2), 104-117. https://doi.org/10.1016/j.jhydrol.2011.08.035
  • Teng, J., Chiew, F. H. S., Vaze, J., Marvanek, S., & Kirono, D. G. C. (2012). Estimation of climate change impact on mean annual runoff across continental Australia using Budyko and Fu equations and hydrological models. J. Hydromet, 13(3), 1094-1106. https://doi.org/10.1175/JHM-D-11-097.1
  • Tisseuil, C., Vrac, M., Lek, S., & Wade, A. J. (2010). Statistical downscaling of river flows. J. Hydrol, 385(1-4), 279-291. https://doi.org/10.1016/j.jhydrol.2010.02.030
  • Todorovic, A., & Plavsic, J. (2016). The role of conceptual hydrologic model calibration in climate change impact on water resources assessment. J. Water. Clim. Change, 7(1), 16-28. https://doi.org/10.2166/wcc.2015.086
  • Usman, M., Ahmad, B., & Bukhari, S. A. A. (2019). Assessment of inter-seasonal, inter-annual and intra-annual variability in snow and rainfall recharged fresh water discharge under IPCC AR5 based climate change scenarios: A case study of Soan river basin, Potowar region, Pakistan. Clim. Change, 5(20), 264-326. Retrieved from https://discoveryjournals.org/climate_change/current_issue/v5/n20/A6.pdf
  • Wand, M. P., & Jones, M. C. (1994). Kernel smoothing. Chapman and Hall/CRC Monographs on Statistics & Applied Probability (60). Boca Raton, FL, U.S.: Chapman & Hall. https://doi.org/10.1201/b14876
  • Wilby, R. L., & Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK. Water Resour. Res., 42(2). https://doi.org/10.1029/2005WR004065
  • Winkler, J. A., Guentchev, G. S., Liszewska, M., & Tan, P. N. (2011). Climate Scenario Development and Applications for Local/Regional Climate Change Impact Assessments: An Overview for the Non‐Climate Scientist: Part II: Considerations When Using Climate Change Scenarios. Geogra. Compass, 5(6), 301-328. https://doi.org/10.1111/j.1749-8198.2011.00426.x
  • Xu, C. Y. (1999). Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resour. Manage., 13(5), 369-382. https://doi.org/10.1023/A:1008190900459
  • Xu, J., Shrestha, A., Vaidya, R., Eriksson, M., & Hewitt, K. (2007). The melting Himalayas: regional challenges and local impacts of climate change on mountain ecosystems and livelihoods. The melting Himalayas: regional challenges and local impacts of climate change on mountain ecosystems and livelihoods. Retrieved from https://lib.icimod.org/record/23899
  • Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., & Kitoh, A. (2012). APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc., 93(9), 1401-1415. https://doi.org/10.1175/BAMS-D-11-00122.1
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.