AQUADEMIA

Volume 2, Issue 2, 2018

Research Article
A New Numerical Model Coupling Modified Method of Characteristics and Galerkin Finite Element Method for Simulation of Solute Transport in Groundwater Flow System
Aquademia: Water, Environment and Technology, 2018, 2(2), 04, https://doi.org/10.20897/awet/90719
ABSTRACT: A new numerical model coupling the modified method of characteristics (MMOC) with the Galerkin finite element method (GFE) is proposed for the assessment of groundwater pollution in regional groundwater flow system. The MMOC-GFE solves governing solute transport equation which involves the simulation of advection and dispersion parts by MMOC and GFE, respectively. This model allows the use of large time steps (large Courant numbers) and large spatial steps (large Peclet numbers) with stable and convergent solutions. The proposed model is successfully implemented for a test case which includes comparison of the model results with reported solutions of other numerical models. It is found that MMOC-GFE model is quite adequate in simulating solute transport in heterogeneous aquifer with combined pumping and injection schemes.
Research Article
Experimental Investigation of Treatment of Domestic Wastewater Using Multi Soil Layering (MSL) System
Aquademia: Water, Environment and Technology, 2018, 2(2), 05, https://doi.org/10.20897/awet/3963
ABSTRACT: Soil has been used for the treatment of wastewater from long time ago. Domestic wastewater treatment and disposal is the serious problem our country is facing nowadays. If not treated it further pollutes the rivers. In villages or rural areas where centralized wastewater treatment is not possible because of the scattered houses, a decentralized treatment unit needs to be installed. Multi Soil Layering system is such a decentralized treatment used for the treatment of domestic wastewater. The main objective of this study is to investigate the experimental setup of Multi Soil layering system for the treatment of domestic wastewater. The pre-fabricated acrylic material model of dimension 50cm (L) x 20cm (W) x 60cm (D) was used for the experimental analysis. The potential of the MSL for removal of pollutants from wastewater by changing the operating conditions like flow rate, aeration and non aeration condition was studied. The MSL system proved to be efficient for treatment of domestic wastewater. The study revealed that the flow rate of 0.2 m3/m2/day with aeration condition was efficient for treating domestic wastewater by Multi Soil Layering System. For Flow rate of 0.2 m3/m2/day, the average inlet and outlet ph was observed pH 6.75 and 7.59. The percent removal was as follows: BOD: 87.63%, COD: 87.73%, TSS: 77.12% and TP: 95.45%.