Aquademia

Spread of COVID-19 Pandemic in Zambia: A Mathematical Model
Eddie M. Mulenga 1 *
More Detail
1 PhD Candidate, School of Doctoral Studies, University of Valladolid, SPAIN
* Corresponding Author
Research Article

Aquademia, 2020 - Volume 4 Issue 2, Article No: ep20019
https://doi.org/10.29333/aquademia/8375

Published Online: 30 Jun 2020

Views: 67 | Downloads: 44

How to cite this article
APA 6th edition
In-text citation: (Mulenga, 2020)
Reference: Mulenga, E. M. (2020). Spread of COVID-19 Pandemic in Zambia: A Mathematical Model. Aquademia, 4(2), ep20019. https://doi.org/10.29333/aquademia/8375
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Mulenga EM. Spread of COVID-19 Pandemic in Zambia: A Mathematical Model. AQUADEMIA. 2020;4(2):ep20019. https://doi.org/10.29333/aquademia/8375
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Mulenga EM. Spread of COVID-19 Pandemic in Zambia: A Mathematical Model. AQUADEMIA. 2020;4(2), ep20019. https://doi.org/10.29333/aquademia/8375
Chicago
In-text citation: (Mulenga, 2020)
Reference: Mulenga, Eddie M.. "Spread of COVID-19 Pandemic in Zambia: A Mathematical Model". Aquademia 2020 4 no. 2 (2020): ep20019. https://doi.org/10.29333/aquademia/8375
Harvard
In-text citation: (Mulenga, 2020)
Reference: Mulenga, E. M. (2020). Spread of COVID-19 Pandemic in Zambia: A Mathematical Model. Aquademia, 4(2), ep20019. https://doi.org/10.29333/aquademia/8375
MLA
In-text citation: (Mulenga, 2020)
Reference: Mulenga, Eddie M. "Spread of COVID-19 Pandemic in Zambia: A Mathematical Model". Aquademia, vol. 4, no. 2, 2020, ep20019. https://doi.org/10.29333/aquademia/8375
ABSTRACT
There has been a cumulative increase in the number of COVID-19 confirmed cases, recoveries as well as deaths in Zambia as declared by the Ministry of Health on regular basis. Based on the available statistical information, this article will discuss a mathematical model concerning the spread of COVID-19 in Zambia. To predict the spread of COVID-19 in Zambian provinces, a multiple regression analysis describing the inter-play of factors influencing the increase in the number of cases is used to formalize the relationship. To ascertain the accuracy of the mathematical model used, exponential graphs regarding the spread of coronavirus (COVID-19) since its arrival over time in Zambia were obtained.
KEYWORDS
REFERENCES
  • Amanso, O., Aguegboh, N., Achimugwu, P., Okeke, C., Chukwuemeka, B., Nnamaga, K., & Oshilim, E. (2020). Mathematical model of the early incidence and spread of COVID-19 in Nigeria combined with control measure. International Journal of Scientific and Engineering Research, 11(4), 1110.
  • Basilaia, G., & Kvavadze, D. (2020). Transition to Online Education in Schools during a SARS-CoV-2 Coronavirus (COVID-19) Pandemic in Georgia. Pedagogical Research, 5(4), em0060. https://doi.org/10.29333/pr/7937
  • Baud, D., Qi, X., Nielsen-Saines, K., Musso, D., Pomar, L., & Favre, G. (2020). Real estimates of mortality following COVID-19 infection. The Lancet Infectious Diseases, 20(July 2020), 773. https://doi.org/10.1016/S1473-3099(20)30195-X
  • Cakir, Z., & Savas, H. B. (2020). A Mathematical Modelling Approach in the Spread of the Novel 2019 Coronavirus SARS-CoV-2 (COVID-19) Pandemic. Electronic Journal of General Medicine, 17(4), em205. https://doi.org/10.29333/ejgm/7861
  • Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Rev. Mod. Phys., 81(2), 591-646. https://doi.org/10.1103/RevModPhys.81.591
  • Crokidakis, N. (In Press). Modeling the early evolution of the COVID-19 in Brazil: results from a Susceptible-Infectious-Quarantined-Recovered (SIQR) model. International Journal of Modern Physics C. https://doi.org/10.1142/S0129183120501351
  • Donsimoni, J. R., Glawion, R., Plachter, B., & Wälde, K. (2020). Projecting the spread of COVID-19 for Germany. German Economic Review, 21(2), 181-216. https://doi.org/10.1515/ger-2020-0031
  • Helbing, D. (2010). Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes. Springer, Berlin. https://doi.org/10.1007/978-3-642-11546-2
  • Helbing, D., Brockmann, D., Chadefaux, T., Donnay, K., Blanke, U., Woolley-Meza, O., Moussaid, M., Johansson, A., Krause, J., Schutte, S., & Perc, M. (2015). Saving Human Lives: What Complexity Science and Information Systems can Contribute. Journal of Statistical Physics, 158(3), 735-781. https://doi.org/10.1007/s10955-014-1024-9
  • Jiang, R. (2020). Inside China and COVID-19: Questions and answers. Travel Medicine and Infectious Disease, 34(March-April 2020), 101640. https://doi.org/10.1016/j.tmaid.2020.101640
  • Kraemer, M. U., Yang, C. H., Gutierrez, B., Wu, C. H., Klein, B., Pigott, D. M., ... Brownstein, J. S. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493-497. https://doi.org/10.1126/science.abb4218
  • Koltsova, E., Kurkina, E., & Vasetsky, A. (2020). Mathematical modeling of the spread of COVID-19 in Moscow. Computational Nanotechnology, 7, 99-105. https://doi.org/10.33693/2313-223X-2020-7-1-99-105
  • Lucero, J. (2020). Mathematical modeling of COVID-19 in Brazil. https://doi.org/10.13140/RG.2.2.25266.56004
  • McCloskey, B., Zumla, A., Ippolito, G., Blumberg, L., Arbon, P., Cicero, A., Endericks, T., Lim, P., & Borodina, M. (2020). Mass gathering events and reducing further global spread of COVID-19: a political and public health dilemma. The Lancet, 395(April 4, 2020), 1096-1099. https://doi.org/10.1016/S0140-6736(20)30681-4
  • Perc, M., Miksić, N., Slavinec, M., & Stozer, A. (2020). Forecasting COVID-19. Frontiers in Physics, 8, 127. https://doi.org/10.3389/fphy.2020.00127
  • Roy, S., & Roy Bhattacharya, K. (2020). Spread of COVID-19 in India: A Mathematical Model. Journal of Science and Technology, 5(3), 41-47. https://doi.org/10.46243/jst.2020.v5.i3.pp41-47
  • Short, M. B., Brantingham, P. J., Bertozzi, A. L., & Tita, G. E. (2010). Dissipation and displacement of hotspots in reaction-diffusion models of crime. Proc. Natl. Acad. Sci. USA, 107(9), 3961-3965. https://doi.org/10.1073/pnas.0910921107
  • Shrivastava, S., & Shrivastava, P. (2020). Resorting to mathematical modelling approach to contain the coronavirus disease 2019 (COVID-19) outbreak. Journal of Acute Disease, 9(2), 49-50. https://doi.org/10.4103/2221-6189.281311
  • Sugiyanto, S., & Abrori, M. (2020). A Mathematical Model of the Covid-19 Cases in Indonesia (Under and Without Lockdown Enforcement). Biology, Medicine, & Natural Product Chemistry, 9(1), 15-19. https://doi.org/10.14421/biomedich.2020.91.15-19
  • Tian, H., Liu, Y., Li, Y., Wu, C.-H., Chen, B., Kraemer, M., Li, B., Cai, J., Xu, B., Yang, Q., Wang, B., Yang, P., Cui, Y., Song, Y., Zheng, P., Wang, Q., Bjornstad, O., Yang, R., Grenfell, B., & Dye, C. (2020). An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 368(6491), eabb6105. https://doi.org/10.1126/science.abb6105
  • Weidlich, W. (2000). Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. Tyler and Francis, London.
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.